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g SIGNIFICANCE AND EXPLANATION i
'\ We consider the motion of a viscous fluid filling the whole space R3, :
ot governed by the classical Navier-Stokes equations (1). Existence of global i
" . (in time) regular solutions for that system of non-linear partial differential

__%: equations, is still an open problem. From either the mathematical and the

b0

i‘ y - physical point of view, an interesting property is the stability (or not) of

';"3‘:’. the (eventual) global regular solutions. Here, we assume that v1(t,x) is a

2.4, 5

:,':':E': solution, with initial data ay(x). For small perturbations of a,, we want

(300 )

;,“ the solution v,(t,x) being slightly perturbed, too. Due to viscosity, it is

»_.;: even expected that the perturbed solution vz(t,x) approaches the unperturbed

?‘é one, as time goes to +w. This is just the result proved in this paper. To

5’ measure the distance between v1(t,x) and vz(t,x), at each time ¢,

:v suitable norms are introduced (LP-norms).

% , For fluids filling a bounded vessel, exponential decay of the above

distance, is expected. Such a strong result is not reasonable, for fluids 7

filling the entire space./‘-‘\In this case, we prove that the 1P-distance

e , 1.3/4

e between v, and v, goes.to zero as (E)3/ .
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f':: 3 LP-STABILITY FOR THE STRONG SOLUTIONS OF THE
\ NAVIER-STOKES EQUATIONS IN THE WHOLE SPACE
f‘.*
b

~ H. Beirao da Veiga and P. Secchi.
3

\;ﬁ

;{X Introduction. Consider the initial value problem for the non-stationary
;) Navier-Stokes equations in the whole space R3

o

";_}2 v' + (veV)v - Av + Vn = 0 in Qp = 10, (xR ,

e

.-:\.‘

e
ro divv=0 in Qp

(:'.'

ﬁ{: (1 Vie=o ~ @ in RY,
ot lim v(t,x) = 0 for t € 10,T( ,

x|+

- I
;l’- v 3 v
iy where T €)0,®), v' =— and (veV)v = z Vv, m— .
W8 t i=q i Sxi
b ‘n_}

A

N The given initial velocity a(x) satisfies diva =0 in R3.
,jr: Moreover, the pressure n is determined by the condition 1lim n(t,x) =20
(-2 x| e
fiﬂj for t ¢ ]0,T[. By a solution of problem (1), we mean a divergence free
:) vector v(t,x) € Lq(O.Ter) for some q, r with q, r » 2, such that
K%
Y T

*$ f [ (vegp' + (veV)gev + veApldx 4t = -f a °|t=0dx R

nt) ’

o for every regular divergence free vector field o(t,x), with compact support
5ﬂ with respect to the space variables and such that ¢(T,x) = 0. We set
ﬂ".:
A'S

e
o

o

*

& *Department of Mathematics - University of Trento - 38050 POVO (Trento) Italy.
b
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-‘.‘_- LP—I.P(R), 'lp—"ﬂp3l
;’.1‘? L (R7)
i%’
v\ -

R Np(v) = f3|\7v|2|v|p %ax .

R

;.,;;.YQ

qgﬁg Other notations are standard, or will be introduced in the sequel. Let

Iy

1 pt+2 . )

3‘ﬁ p >3 and a1 eL NL , div ay = 0. Assume that there exists a global
g . © p+2 .

) solution v, € L (0,+>;L ) of problem (1), with initial velocity a4 and
N

gﬂ pressure m,. This solution is strong and unique.1 We prove the following
.|’
§.} stability result:
o
¥

Y . 1 P

Theorem A Assume that the above conditions hold and let a, e L NL", be

,ﬁ"ﬂ such that div a, = 0. Then, there exists a positive constant y such that
i = 2 0 o=
A

® if

o -

I (2) aj a2|p <yg s

1% .
% there exists a unique solution v, € C([0,+=);L") of (1) with initial data
[ %

aj. This solution verifies the estimate

-\l -
A (3) lv.(t) - v.(e)]_ < cr+ 0374
*jg 1 2 p
0
55; The constants y; and C depend on p, on the L' and 12 norms of the

+ 2
initial data a, and a,, and on the Lw(0,+w;Lp ) norm of vqe In

Wi
el

particular, by considering initial data a, such that

PP

lagly < lagly + kg v layly < fagly + %, 0

where k1 and k, are any positive constants, yg and C depend only on

Fighv sl oy aolb}
A i
R s

ky, kK, and on the norms |a1|1, |a1|2 and ﬂv1H o p+ of the
L (0,+=;L )

AT AT T

Sl
)

X

unperturbed solution v,. .

x

2l

ot
LN

1
We refer the reader to the results proved in [2]. See also (5], and

references there.
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The local existence and uniqueness of a strongly continuous solution
vo(t) with values in 12 Nn1P s well known. The bound (3) guarantees the
global existence of v,(t). |

The proof of theorem A follows the method introduced in reference [1) in

order to study the asymptotic behaviour of the solutions of system (1).

Proof of theorem A. The difference w = v, = vy satisfies the following

system:
(4) w' o+ (vz-V)w + (w-V)v1 -Aw + VP =20 in Qn
div w=20 in Qp »
w|t=0 =a in R; ’
where P = T, =T, and a = a, < a,. Multiply both sides of equation (4) by

|wlp'2w and integrate over R3. After suitable integrations by parts we

obtain

d 2 22 i
a—lwlg+up(w)+4%—f|v|w|9/l = 1

1
P p

- f (vz-V)w-|w|p-2w - f(w-V)v1 . leppzw - fVP-lep-zw .

The first term on the right-hand side is zero since v, is divergence free.

By integrating by parts the other two terms we get

d -1
= |w|§ +N 0 < (p -1 |w|P lvwl|v, | +

o 3 T

(5)

-2
(p = 2) [ |p||w|P"%|vw]

Consider the first integral on the right-hand side of (5). By HYlder's and

Young's inequalities one has

-:. * Jn-,. J' ‘,',:'A;(f .\.‘\.n*:ﬁi.‘,‘.‘;(:{v_‘

u') {

ﬁf)'.:_“
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(e -1 [ [wP )], < (p - nup(w)‘/’- (S 1wl Pl 1312

(6) < g N0+ 2p - n2 [ |w|P |v1|2

@)

N (W) + 2(p - 1) |2

|w|p+2 lv, p+2

[T

On the other hand, one can prove the following inequality (see (1], equation

(1.14)):
3 plp-1)
o) pt2 P+2 .
(7) |w|p+2 <cC gp(w) lwlp ;
hence, from (6), one obtains
2(2+2)
(8) (p = 1 [ WP fvallv ] < 1a 0+ clulPlv (o, p-1

Consider now the second integral on the right-hand side of (5). By HSlder's

and Young's inequalities we have

'p-2)1/2 1/2

(e - 2) [ | |w|®"3|w] < (p - 20¢f|P|?|w N ()

(9) < 2(p - 2)2 / |1>|2|w|1"'2 + % Np(w)

< 2(p - 2)2| | *g N

2

l lp+2

To estimate P, we take the divergence of (4) and obtain

2 2
- 3 i b 3, _ 9 i b h}
Ap .?_ TRTIAA R .5. eyl U E AR DR
1.3 1] i,) i3

From the Calderdén-Zygmund inequality one has

i o3 J
< + ;
|p| +2 C 'Y'|w (2v1 w?)| ;
2 1ed 2
-4-
N e e b e AT
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then, by HSlder's inequality,

2 2 2 2
|P|2.2 < C|w|p+2(|v1|p+2 + lw|p+2) *
2

By introducing this last inequality in (9) and by using inequality (7), we get

-2 2
(p = 2) [|p}|w|® |ww] < c|w|§+2(|v1|p+2 | l 5 Np(w)

3 plp-1) 3
(10) <c Np(w)P*zlwlp pt+2 |v1|:+ +c N (PP 3 N (W)

5 B2 pip-1)
p-1 p-3

1 P
< g N4 c|w|p|v1|w2 +C |w|p .

4

Hence, by using inequalities (8) and (10), we get from (5)

2(pt+2 p{p-1)
-1 p-3
(- R | Ply
(11) P& |w|p + 3 Np(w) < C|w|p|v1|p¢2 + Clwlp .

On the other hand, one can prove the following Sobolev type inequality

(sea(1], equation (3.2))
N_(w) > c|w|®
P HBp'

and, by interpolation, one has

4 3(p-2)
3p~2 3p-
ol ¢ e 2272 ) P72

Hence
-B p+8
(12) Np(w) > C,wl2 lep ,

where £ = 4p/3(p-2). On the other hand, by a result proved in reference (3]

(see also {4)) on the Lz-decay of the solutions of the Navier-Stokes
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equations, one has

(13) |w(t)|2 < v, + |v2(t)|2 <c(t+ 17V,

l

where C depends only on the L and L2-norms of the initial velocities.

Then, from (12) and (13), we obtain

(14) N (w) > c (¢ + 1)3874)P*8
P P

Hence, from (11) and (14), we have

2(pt2) p(p=1)
1 d 38/4 +8 -1 -3
S g IWIE e+ PP cclulflo | BT s clu] PP

from which we obtain, since vy is bounded in LP+2, uniformly in time,

(15) -4

|w| + c (e + 1)3874 4|8+
p P

1+8+y
< c2|w|p + c3|w|p

where Yy = 2p2/3(p - 2)(p - 3). In (15), C4 depends on p and on the L?

and L%-norms of the initial velocities, C, depends on p and

+ C3 depends only on p. Consider now the corresponding

o.d.e.
+ 148+
yre) + cye + 128 en T - coyio ¢ cgyen Y
(16)
(0) = Ja .
y lal,
We prove now that, if lalp is sufficiently small, then
ylt) <€ C(t + 1)-3/4. By comparison theorems for o.d.e. it will follow that
[w(t)|p < y(t); hence (3) holds. Let ty € ]0,+=[ be such that
c, +C
2 3y 4/38
(17) ty > (=) 1
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By the continuous dependence on the initial data of the solution of (16), one
can find yy > 0 (depending on p and on C;, i=1,2,3) sufficiently small

such that, if |a|p < yo, then y(t) < 1 for each t € [O,tO]- Moreover, if

" L] 'I
AL
ibdndidendodndll  Selededede ool = At . i wC

A there exists t » to such that y(t) = 1, then from (16) and (17) one has

VL‘.‘

¥ 38/4

4R ' = - + 1 + +

) y'(t) C,(t ) C,+ C,
'
-"\ :
- 38/4 !
S - + + . 1
X < C1(t0 1) + c2 c3 <0 1
;? This implies y(t) < 1, for any t > 0. From (16), we then obtain ;
LY
&

y(t) € z(t) for any t » 0, where z(t) is the solution of

T
A i A b iy e
PR t‘

. 4 +
: zr(t) + e e + BN < (o, e
’ 1
® (18)
£ z{(0) = |a .
\ lal,
‘:3 Equation (18) is of Bernoulli type and its solution is given by
Y.
- 1
L (C,+C )t t B(C,+C)s - =
- 3 38/4
N 2(t) =e 2 3 [|ai LI [ e 2 BC (s + 1) B/4367 B .
N P 0
Hence
At \
- B(C, + Cy)t
N 38/4
1+
>y z)P (1 + 0374 < G+ t) .
g - t 3(02 * Cyls 38/4
N y, + BC e (s + 1) ds
("~ 0 1
[\ 0
o
E{ By the f'Hopital theorem one easily shows that the right-hand-side of the
f}: above inequality converges to (C, + C3)/C4y as t + +w. Since it is equal to
,f yg for t = 0, it follows that it is bounded, in the interval [0,+~) by a
;:‘ constant C (which depends only on C4, C,, C4 and p).
e
o
:"‘ -7=
oo
i‘..L..J‘.l-A -_(:‘-(‘.\n i' o .‘i\.'f:f e :-'A.f"ﬁ" A Uatta Xy 1-3_‘11'__\.._“.‘1.&\-_\- 1.1
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